MakeItFrom.com
Menu (ESC)

C19700 Copper vs. CC490K Brass

Both C19700 copper and CC490K brass are copper alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.4 to 13
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 400 to 530
230
Tensile Strength: Yield (Proof), MPa 330 to 520
110

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
980
Melting Onset (Solidus), °C 1040
910
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 250
72
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
16
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
16

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
28
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
54
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12 to 16
7.3
Strength to Weight: Bending, points 14 to 16
9.5
Thermal Diffusivity, mm2/s 73
22
Thermal Shock Resistance, points 14 to 19
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
81 to 86
Iron (Fe), % 0.3 to 1.2
0 to 0.5
Lead (Pb), % 0 to 0.050
3.0 to 6.0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0 to 0.050
0 to 2.0
Phosphorus (P), % 0.1 to 0.4
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0 to 0.2
2.0 to 3.5
Zinc (Zn), % 0 to 0.2
7.0 to 9.5
Residuals, % 0 to 0.2
0