MakeItFrom.com
Menu (ESC)

C19700 Copper vs. Grade 36 Titanium

C19700 copper belongs to the copper alloys classification, while grade 36 titanium belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is grade 36 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.4 to 13
11
Poisson's Ratio 0.34
0.36
Shear Modulus, GPa 43
39
Shear Strength, MPa 240 to 300
320
Tensile Strength: Ultimate (UTS), MPa 400 to 530
530
Tensile Strength: Yield (Proof), MPa 330 to 520
520

Thermal Properties

Latent Heat of Fusion, J/g 210
370
Maximum Temperature: Mechanical, °C 200
320
Melting Completion (Liquidus), °C 1090
2020
Melting Onset (Solidus), °C 1040
1950
Specific Heat Capacity, J/kg-K 390
420
Thermal Expansion, µm/m-K 17
8.1

Otherwise Unclassified Properties

Density, g/cm3 8.9
6.3
Embodied Carbon, kg CO2/kg material 2.6
58
Embodied Energy, MJ/kg 41
920
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
59
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
1260
Stiffness to Weight: Axial, points 7.2
9.3
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 16
23
Strength to Weight: Bending, points 14 to 16
23
Thermal Shock Resistance, points 14 to 19
45

Alloy Composition

Carbon (C), % 0
0 to 0.030
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Hydrogen (H), % 0
0 to 0.0035
Iron (Fe), % 0.3 to 1.2
0 to 0.030
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0 to 0.050
0
Niobium (Nb), % 0
42 to 47
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.16
Phosphorus (P), % 0.1 to 0.4
0
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
52.3 to 58
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4