MakeItFrom.com
Menu (ESC)

C19700 Copper vs. Grade CW6MC Nickel

C19700 copper belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.4 to 13
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 400 to 530
540
Tensile Strength: Yield (Proof), MPa 330 to 520
310

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1480
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 250
11
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
14
Embodied Energy, MJ/kg 41
200
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
130
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 16
18
Strength to Weight: Bending, points 14 to 16
17
Thermal Diffusivity, mm2/s 73
2.8
Thermal Shock Resistance, points 14 to 19
15

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.050
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0.1 to 0.4
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0