MakeItFrom.com
Menu (ESC)

C19700 Copper vs. Nickel 333

C19700 copper belongs to the copper alloys classification, while nickel 333 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.4 to 13
34
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 67 to 75
85
Shear Modulus, GPa 43
81
Shear Strength, MPa 240 to 300
420
Tensile Strength: Ultimate (UTS), MPa 400 to 530
630
Tensile Strength: Yield (Proof), MPa 330 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 250
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
8.5
Embodied Energy, MJ/kg 41
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
170
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 16
21
Strength to Weight: Bending, points 14 to 16
19
Thermal Diffusivity, mm2/s 73
2.9
Thermal Shock Resistance, points 14 to 19
16

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
24 to 27
Cobalt (Co), % 0 to 0.050
2.5 to 4.0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
9.3 to 24.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.050
44 to 48
Phosphorus (P), % 0.1 to 0.4
0 to 0.030
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0