MakeItFrom.com
Menu (ESC)

C19700 Copper vs. SAE-AISI 1020 Steel

C19700 copper belongs to the copper alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 13
17 to 28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 240 to 300
280
Tensile Strength: Ultimate (UTS), MPa 400 to 530
430 to 460
Tensile Strength: Yield (Proof), MPa 330 to 520
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 250
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
11
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
18
Embodied Water, L/kg 310
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
150 to 380
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 16
15 to 16
Strength to Weight: Bending, points 14 to 16
16 to 17
Thermal Diffusivity, mm2/s 73
14
Thermal Shock Resistance, points 14 to 19
13 to 14

Alloy Composition

Carbon (C), % 0
0.18 to 0.23
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
99.08 to 99.52
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0.3 to 0.6
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0.1 to 0.4
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0