MakeItFrom.com
Menu (ESC)

C19700 Copper vs. N07716 Nickel

C19700 copper belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.4 to 13
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
78
Shear Strength, MPa 240 to 300
580
Tensile Strength: Ultimate (UTS), MPa 400 to 530
860
Tensile Strength: Yield (Proof), MPa 330 to 520
350

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1480
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 250
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
75
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
13
Embodied Energy, MJ/kg 41
190
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
240
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
300
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 16
28
Strength to Weight: Bending, points 14 to 16
24
Thermal Diffusivity, mm2/s 73
2.8
Thermal Shock Resistance, points 14 to 19
24

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
0 to 11.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 0.050
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0.1 to 0.4
0 to 0.015
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
1.0 to 1.6
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0