MakeItFrom.com
Menu (ESC)

C19700 Copper vs. N08026 Nickel

C19700 copper belongs to the copper alloys classification, while N08026 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is N08026 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.4 to 13
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Shear Strength, MPa 240 to 300
410
Tensile Strength: Ultimate (UTS), MPa 400 to 530
620
Tensile Strength: Yield (Proof), MPa 330 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 250
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
41
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.6
7.2
Embodied Energy, MJ/kg 41
98
Embodied Water, L/kg 310
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
170
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 16
21
Strength to Weight: Bending, points 14 to 16
20
Thermal Diffusivity, mm2/s 73
3.2
Thermal Shock Resistance, points 14 to 19
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 26
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
2.0 to 4.0
Iron (Fe), % 0.3 to 1.2
24.4 to 37.9
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.7
Nickel (Ni), % 0 to 0.050
33 to 37.2
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0.1 to 0.4
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0