MakeItFrom.com
Menu (ESC)

C19700 Copper vs. R30155 Cobalt

C19700 copper belongs to the copper alloys classification, while R30155 cobalt belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.4 to 13
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
81
Shear Strength, MPa 240 to 300
570
Tensile Strength: Ultimate (UTS), MPa 400 to 530
850
Tensile Strength: Yield (Proof), MPa 330 to 520
390

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 250
12
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
9.7
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
230
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
370
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 16
28
Strength to Weight: Bending, points 14 to 16
24
Thermal Diffusivity, mm2/s 73
3.2
Thermal Shock Resistance, points 14 to 19
21

Alloy Composition

Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0 to 0.050
18.5 to 21
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
24.3 to 36.2
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.050
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0.1 to 0.4
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tin (Sn), % 0 to 0.2
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0