MakeItFrom.com
Menu (ESC)

C19700 Copper vs. S34565 Stainless Steel

C19700 copper belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.4 to 13
39
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 67 to 75
88
Shear Modulus, GPa 43
80
Shear Strength, MPa 240 to 300
610
Tensile Strength: Ultimate (UTS), MPa 400 to 530
900
Tensile Strength: Yield (Proof), MPa 330 to 520
470

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 250
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
28
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
5.3
Embodied Energy, MJ/kg 41
73
Embodied Water, L/kg 310
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
300
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
540
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 16
32
Strength to Weight: Bending, points 14 to 16
26
Thermal Diffusivity, mm2/s 73
3.2
Thermal Shock Resistance, points 14 to 19
22

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
43.2 to 51.6
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.050
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0.1 to 0.4
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0