MakeItFrom.com
Menu (ESC)

C19700 Copper vs. S44660 Stainless Steel

C19700 copper belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.4 to 13
20
Poisson's Ratio 0.34
0.27
Rockwell B Hardness 67 to 75
88
Shear Modulus, GPa 43
81
Shear Strength, MPa 240 to 300
410
Tensile Strength: Ultimate (UTS), MPa 400 to 530
660
Tensile Strength: Yield (Proof), MPa 330 to 520
510

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
21
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
4.3
Embodied Energy, MJ/kg 41
61
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
120
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
640
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 16
24
Strength to Weight: Bending, points 14 to 16
22
Thermal Diffusivity, mm2/s 73
4.5
Thermal Shock Resistance, points 14 to 19
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
60.4 to 71
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.050
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0.1 to 0.4
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0