MakeItFrom.com
Menu (ESC)

C19800 Copper vs. ACI-ASTM CN7M Steel

C19800 copper belongs to the copper alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 12
44
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 430 to 550
480
Tensile Strength: Yield (Proof), MPa 420 to 550
200

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1070
1410
Melting Onset (Solidus), °C 1050
1450
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
21
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 62
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.8
5.6
Embodied Energy, MJ/kg 43
78
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
170
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14 to 17
17
Strength to Weight: Bending, points 14 to 17
17
Thermal Diffusivity, mm2/s 75
5.6
Thermal Shock Resistance, points 15 to 20
12

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 95.7 to 99.47
3.0 to 4.0
Iron (Fe), % 0.020 to 0.5
37.4 to 48.5
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0.010 to 0.1
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0