MakeItFrom.com
Menu (ESC)

C19800 Copper vs. AISI 444 Stainless Steel

C19800 copper belongs to the copper alloys classification, while AISI 444 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is AISI 444 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 12
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 260 to 330
300
Tensile Strength: Ultimate (UTS), MPa 430 to 550
470
Tensile Strength: Yield (Proof), MPa 420 to 550
310

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
23
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 43
47
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
95
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 17
17
Strength to Weight: Bending, points 14 to 17
17
Thermal Diffusivity, mm2/s 75
6.2
Thermal Shock Resistance, points 15 to 20
16

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
73.3 to 80.8
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0.010 to 0.1
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.1 to 1.0
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0