MakeItFrom.com
Menu (ESC)

C19800 Copper vs. R31539 Cobalt

C19800 copper belongs to the copper alloys classification, while R31539 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is R31539 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 9.0 to 12
13 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
86
Tensile Strength: Ultimate (UTS), MPa 430 to 550
1000 to 1340
Tensile Strength: Yield (Proof), MPa 420 to 550
590 to 940

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Melting Completion (Liquidus), °C 1070
1360
Melting Onset (Solidus), °C 1050
1290
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 260
13
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.1

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 43
110
Embodied Water, L/kg 320
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
140 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
780 to 2000
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14 to 17
33 to 44
Strength to Weight: Bending, points 14 to 17
27 to 32
Thermal Diffusivity, mm2/s 75
3.5
Thermal Shock Resistance, points 15 to 20
24 to 32

Alloy Composition

Aluminum (Al), % 0
0.3 to 1.0
Carbon (C), % 0
0 to 0.14
Chromium (Cr), % 0
26 to 30
Cobalt (Co), % 0
57.7 to 68.7
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
0 to 0.75
Lanthanum (La), % 0
0.030 to 0.2
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0.010 to 0.1
0
Silicon (Si), % 0
0 to 1.0
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0