MakeItFrom.com
Menu (ESC)

C19800 Copper vs. EN 1.4852 Stainless Steel

C19800 copper belongs to the copper alloys classification, while EN 1.4852 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is EN 1.4852 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 12
4.6
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 430 to 550
490
Tensile Strength: Yield (Proof), MPa 420 to 550
250

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1070
1380
Melting Onset (Solidus), °C 1050
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
41
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
6.9
Embodied Energy, MJ/kg 43
100
Embodied Water, L/kg 320
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
19
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 17
17
Strength to Weight: Bending, points 14 to 17
18
Thermal Diffusivity, mm2/s 75
3.4
Thermal Shock Resistance, points 15 to 20
11

Alloy Composition

Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
29.6 to 40.9
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 36
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0.010 to 0.1
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0