MakeItFrom.com
Menu (ESC)

C19800 Copper vs. EN 1.5525 Steel

C19800 copper belongs to the copper alloys classification, while EN 1.5525 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.0 to 12
11 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 260 to 330
310 to 350
Tensile Strength: Ultimate (UTS), MPa 430 to 550
440 to 1440
Tensile Strength: Yield (Proof), MPa 420 to 550
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
50
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 62
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
240 to 640
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14 to 17
16 to 51
Strength to Weight: Bending, points 14 to 17
16 to 36
Thermal Diffusivity, mm2/s 75
13
Thermal Shock Resistance, points 15 to 20
13 to 42

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 95.7 to 99.47
0 to 0.25
Iron (Fe), % 0.020 to 0.5
97.7 to 98.9
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0.010 to 0.1
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0