MakeItFrom.com
Menu (ESC)

C19800 Copper vs. Nickel 890

C19800 copper belongs to the copper alloys classification, while nickel 890 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.0 to 12
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 260 to 330
400
Tensile Strength: Ultimate (UTS), MPa 430 to 550
590
Tensile Strength: Yield (Proof), MPa 420 to 550
230

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1070
1390
Melting Onset (Solidus), °C 1050
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
47
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 43
120
Embodied Water, L/kg 320
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
180
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14 to 17
20
Strength to Weight: Bending, points 14 to 17
19
Thermal Shock Resistance, points 15 to 20
15

Alloy Composition

Aluminum (Al), % 0
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 95.7 to 99.47
0 to 0.75
Iron (Fe), % 0.020 to 0.5
17.3 to 33.9
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Phosphorus (P), % 0.010 to 0.1
0
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Tin (Sn), % 0.1 to 1.0
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0