MakeItFrom.com
Menu (ESC)

C19800 Copper vs. N06455 Nickel

C19800 copper belongs to the copper alloys classification, while N06455 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is N06455 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 9.0 to 12
47
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
82
Shear Strength, MPa 260 to 330
550
Tensile Strength: Ultimate (UTS), MPa 430 to 550
780
Tensile Strength: Yield (Proof), MPa 420 to 550
330

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1070
1510
Melting Onset (Solidus), °C 1050
1450
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 260
10
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 62
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
65
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.8
12
Embodied Energy, MJ/kg 43
160
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
300
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
260
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 14 to 17
24
Strength to Weight: Bending, points 14 to 17
21
Thermal Diffusivity, mm2/s 75
2.7
Thermal Shock Resistance, points 15 to 20
24

Alloy Composition

Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
14 to 18
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 95.7 to 99.47
0
Iron (Fe), % 0.020 to 0.5
0 to 3.0
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
14 to 17
Nickel (Ni), % 0
58.1 to 72
Phosphorus (P), % 0.010 to 0.1
0 to 0.040
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.1 to 1.0
0
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0