MakeItFrom.com
Menu (ESC)

C19800 Copper vs. S31266 Stainless Steel

C19800 copper belongs to the copper alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19800 copper and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 9.0 to 12
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 260 to 330
590
Tensile Strength: Ultimate (UTS), MPa 430 to 550
860
Tensile Strength: Yield (Proof), MPa 420 to 550
470

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 260
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 62
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
37
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.8
6.5
Embodied Energy, MJ/kg 43
89
Embodied Water, L/kg 320
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
290
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
540
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14 to 17
29
Strength to Weight: Bending, points 14 to 17
24
Thermal Diffusivity, mm2/s 75
3.1
Thermal Shock Resistance, points 15 to 20
18

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 95.7 to 99.47
1.0 to 2.5
Iron (Fe), % 0.020 to 0.5
34.1 to 46
Magnesium (Mg), % 0.1 to 1.0
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0.010 to 0.1
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.1 to 1.0
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0.3 to 1.5
0
Residuals, % 0 to 0.2
0