MakeItFrom.com
Menu (ESC)

C19800 Copper vs. WE54A Magnesium

C19800 copper belongs to the copper alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19800 copper and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
44
Elongation at Break, % 9.0 to 12
4.3 to 5.6
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
17
Shear Strength, MPa 260 to 330
150 to 170
Tensile Strength: Ultimate (UTS), MPa 430 to 550
270 to 300
Tensile Strength: Yield (Proof), MPa 420 to 550
180

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1070
640
Melting Onset (Solidus), °C 1050
570
Specific Heat Capacity, J/kg-K 390
960
Thermal Conductivity, W/m-K 260
52
Thermal Expansion, µm/m-K 18
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
10
Electrical Conductivity: Equal Weight (Specific), % IACS 62
47

Otherwise Unclassified Properties

Base Metal Price, % relative 30
34
Density, g/cm3 8.9
1.9
Embodied Carbon, kg CO2/kg material 2.8
29
Embodied Energy, MJ/kg 43
260
Embodied Water, L/kg 320
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 52
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 770 to 1320
360 to 380
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
62
Strength to Weight: Axial, points 14 to 17
39 to 43
Strength to Weight: Bending, points 14 to 17
49 to 51
Thermal Diffusivity, mm2/s 75
28
Thermal Shock Resistance, points 15 to 20
18 to 19

Alloy Composition

Copper (Cu), % 95.7 to 99.47
0 to 0.030
Iron (Fe), % 0.020 to 0.5
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0.1 to 1.0
88.7 to 93.4
Manganese (Mn), % 0
0 to 0.030
Nickel (Ni), % 0
0 to 0.0050
Phosphorus (P), % 0.010 to 0.1
0
Silicon (Si), % 0
0 to 0.010
Tin (Sn), % 0.1 to 1.0
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0.3 to 1.5
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3