MakeItFrom.com
Menu (ESC)

C21000 Brass vs. ACI-ASTM CA28MWV Steel

C21000 brass belongs to the copper alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C21000 brass and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 50
11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 240 to 450
1080
Tensile Strength: Yield (Proof), MPa 69 to 440
870

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 190
740
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1050
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 230
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 57
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 830
1920
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.4 to 14
38
Strength to Weight: Bending, points 9.6 to 15
30
Thermal Diffusivity, mm2/s 69
6.6
Thermal Shock Resistance, points 8.1 to 15
40

Alloy Composition

Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 94 to 96
0
Iron (Fe), % 0 to 0.050
81.4 to 85.8
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 3.7 to 6.0
0
Residuals, % 0 to 0.2
0