MakeItFrom.com
Menu (ESC)

C21000 Brass vs. AISI 418 Stainless Steel

C21000 brass belongs to the copper alloys classification, while AISI 418 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C21000 brass and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 50
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 180 to 280
680
Tensile Strength: Ultimate (UTS), MPa 240 to 450
1100
Tensile Strength: Yield (Proof), MPa 69 to 440
850

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 190
770
Melting Completion (Liquidus), °C 1070
1500
Melting Onset (Solidus), °C 1050
1460
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 230
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 57
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 100
170
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 830
1830
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.4 to 14
38
Strength to Weight: Bending, points 9.6 to 15
29
Thermal Diffusivity, mm2/s 69
6.7
Thermal Shock Resistance, points 8.1 to 15
40

Alloy Composition

Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 94 to 96
0
Iron (Fe), % 0 to 0.050
78.5 to 83.6
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 3.7 to 6.0
0
Residuals, % 0 to 0.2
0