MakeItFrom.com
Menu (ESC)

C21000 Brass vs. EN 1.4825 Stainless Steel

C21000 brass belongs to the copper alloys classification, while EN 1.4825 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C21000 brass and the bottom bar is EN 1.4825 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 50
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 240 to 450
510
Tensile Strength: Yield (Proof), MPa 69 to 440
260

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 1070
1410
Melting Onset (Solidus), °C 1050
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 57
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 100
72
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 830
170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.4 to 14
18
Strength to Weight: Bending, points 9.6 to 15
18
Thermal Diffusivity, mm2/s 69
4.0
Thermal Shock Resistance, points 8.1 to 15
12

Alloy Composition

Carbon (C), % 0
0.15 to 0.35
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 94 to 96
0
Iron (Fe), % 0 to 0.050
65.6 to 74.4
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.5 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 3.7 to 6.0
0
Residuals, % 0 to 0.2
0