MakeItFrom.com
Menu (ESC)

C21000 Brass vs. Nickel 725

C21000 brass belongs to the copper alloys classification, while nickel 725 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C21000 brass and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 50
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
78
Shear Strength, MPa 180 to 280
580
Tensile Strength: Ultimate (UTS), MPa 240 to 450
860
Tensile Strength: Yield (Proof), MPa 69 to 440
350

Thermal Properties

Latent Heat of Fusion, J/g 200
320
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 1070
1340
Melting Onset (Solidus), °C 1050
1270
Specific Heat Capacity, J/kg-K 390
440
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 57
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
75
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 2.6
13
Embodied Energy, MJ/kg 42
190
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 100
240
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 830
300
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 7.4 to 14
28
Strength to Weight: Bending, points 9.6 to 15
24
Thermal Shock Resistance, points 8.1 to 15
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22.5
Copper (Cu), % 94 to 96
0
Iron (Fe), % 0 to 0.050
2.3 to 15.3
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.7
Zinc (Zn), % 3.7 to 6.0
0
Residuals, % 0 to 0.2
0