MakeItFrom.com
Menu (ESC)

C21000 Brass vs. N08700 Stainless Steel

C21000 brass belongs to the copper alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C21000 brass and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 50
32
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 36 to 73
81
Shear Modulus, GPa 43
79
Shear Strength, MPa 180 to 280
410
Tensile Strength: Ultimate (UTS), MPa 240 to 450
620
Tensile Strength: Yield (Proof), MPa 69 to 440
270

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1050
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 230
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 57
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 2.6
6.0
Embodied Energy, MJ/kg 42
82
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 100
160
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 830
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.4 to 14
21
Strength to Weight: Bending, points 9.6 to 15
20
Thermal Diffusivity, mm2/s 69
3.5
Thermal Shock Resistance, points 8.1 to 15
14

Alloy Composition

Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 94 to 96
0 to 0.5
Iron (Fe), % 0 to 0.050
42 to 52.7
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 3.7 to 6.0
0
Residuals, % 0 to 0.2
0