MakeItFrom.com
Menu (ESC)

C21000 Brass vs. S13800 Stainless Steel

C21000 brass belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C21000 brass and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 50
11 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 180 to 280
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 240 to 450
980 to 1730
Tensile Strength: Yield (Proof), MPa 69 to 440
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
810
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1050
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 230
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 57
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
15
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 100
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 830
1090 to 5490
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.4 to 14
35 to 61
Strength to Weight: Bending, points 9.6 to 15
28 to 41
Thermal Diffusivity, mm2/s 69
4.3
Thermal Shock Resistance, points 8.1 to 15
33 to 58

Alloy Composition

Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 94 to 96
0
Iron (Fe), % 0 to 0.050
73.6 to 77.3
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 3.7 to 6.0
0
Residuals, % 0 to 0.2
0