MakeItFrom.com
Menu (ESC)

C22600 Bronze vs. AISI 334 Stainless Steel

C22600 bronze belongs to the copper alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C22600 bronze and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 33
34
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 46 to 85
79
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 320
360
Tensile Strength: Ultimate (UTS), MPa 330 to 570
540
Tensile Strength: Yield (Proof), MPa 270 to 490
190

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 1040
1410
Melting Onset (Solidus), °C 1000
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 28
22
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 42
59
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1070
96
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
19
Strength to Weight: Bending, points 12 to 18
19
Thermal Shock Resistance, points 11 to 19
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
55.7 to 62.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
19 to 21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 10.7 to 14
0
Residuals, % 0 to 0.2
0