MakeItFrom.com
Menu (ESC)

C22600 Bronze vs. ASTM A182 Grade F122

C22600 bronze belongs to the copper alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C22600 bronze and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 33
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 320
450
Tensile Strength: Ultimate (UTS), MPa 330 to 570
710
Tensile Strength: Yield (Proof), MPa 270 to 490
450

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 1040
1490
Melting Onset (Solidus), °C 1000
1440
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 170
24
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
10
Electrical Conductivity: Equal Weight (Specific), % IACS 42
12

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 100
140
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1070
520
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 18
25
Strength to Weight: Bending, points 12 to 18
22
Thermal Diffusivity, mm2/s 52
6.4
Thermal Shock Resistance, points 11 to 19
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 86 to 89
0.3 to 1.7
Iron (Fe), % 0 to 0.050
81.3 to 87.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 10.7 to 14
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.2
0