MakeItFrom.com
Menu (ESC)

C22600 Bronze vs. S46800 Stainless Steel

C22600 bronze belongs to the copper alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C22600 bronze and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 33
25
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 46 to 85
79
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 320
300
Tensile Strength: Ultimate (UTS), MPa 330 to 570
470
Tensile Strength: Yield (Proof), MPa 270 to 490
230

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 1000
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 170
23
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 42
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 42
37
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 100
98
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1070
130
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
17
Strength to Weight: Bending, points 12 to 18
18
Thermal Diffusivity, mm2/s 52
6.1
Thermal Shock Resistance, points 11 to 19
16

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
76.5 to 81.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.070 to 0.3
Zinc (Zn), % 10.7 to 14
0
Residuals, % 0 to 0.2
0