MakeItFrom.com
Menu (ESC)

C23000 Brass vs. C87900 Brass

Both C23000 brass and C87900 brass are copper alloys. They have 81% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.9 to 47
25
Poisson's Ratio 0.33
0.31
Rockwell B Hardness 48 to 87
70
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 280 to 590
480
Tensile Strength: Yield (Proof), MPa 83 to 480
240

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 1030
930
Melting Onset (Solidus), °C 990
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 160
120
Thermal Expansion, µm/m-K 19
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
15
Electrical Conductivity: Equal Weight (Specific), % IACS 39
17

Otherwise Unclassified Properties

Base Metal Price, % relative 28
24
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 43
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
100
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
270
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 8.9 to 19
17
Strength to Weight: Bending, points 11 to 18
17
Thermal Diffusivity, mm2/s 48
37
Thermal Shock Resistance, points 9.4 to 20
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 84 to 86
63 to 69.2
Iron (Fe), % 0 to 0.050
0 to 0.4
Lead (Pb), % 0 to 0.050
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 13.7 to 16
30 to 36
Residuals, % 0 to 0.2
0