MakeItFrom.com
Menu (ESC)

C23000 Brass vs. S20910 Stainless Steel

C23000 brass belongs to the copper alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C23000 brass and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.9 to 47
14 to 39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Shear Strength, MPa 220 to 340
500 to 570
Tensile Strength: Ultimate (UTS), MPa 280 to 590
780 to 940
Tensile Strength: Yield (Proof), MPa 83 to 480
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1080
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 990
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 19
16

Otherwise Unclassified Properties

Base Metal Price, % relative 28
22
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 43
68
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2 to 260
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 1040
460 to 1640
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 8.9 to 19
28 to 33
Strength to Weight: Bending, points 11 to 18
24 to 27
Thermal Diffusivity, mm2/s 48
3.6
Thermal Shock Resistance, points 9.4 to 20
17 to 21

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 84 to 86
0
Iron (Fe), % 0 to 0.050
52.1 to 62.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 13.7 to 16
0
Residuals, % 0 to 0.2
0