MakeItFrom.com
Menu (ESC)

C23400 Brass vs. 6065 Aluminum

C23400 brass belongs to the copper alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C23400 brass and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 370 to 640
310 to 400

Thermal Properties

Latent Heat of Fusion, J/g 190
400
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 970
640
Melting Onset (Solidus), °C 930
590
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 19
23

Otherwise Unclassified Properties

Base Metal Price, % relative 27
11
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 2.6
8.4
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 320
1200

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 12 to 21
31 to 40
Strength to Weight: Bending, points 13 to 19
36 to 43
Thermal Diffusivity, mm2/s 36
67
Thermal Shock Resistance, points 12 to 22
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 81 to 84
0.15 to 0.4
Iron (Fe), % 0 to 0.050
0 to 0.7
Lead (Pb), % 0 to 0.050
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 15.7 to 19
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15