MakeItFrom.com
Menu (ESC)

C24000 Brass vs. 6005A Aluminum

C24000 brass belongs to the copper alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C24000 brass and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 310 to 640
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 190
410
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 1000
650
Melting Onset (Solidus), °C 970
600
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 140
180 to 190
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 34
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 320
1180

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 10 to 21
20 to 30
Strength to Weight: Bending, points 12 to 20
27 to 36
Thermal Diffusivity, mm2/s 43
72 to 79
Thermal Shock Resistance, points 10 to 22
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 78.5 to 81.5
0 to 0.3
Iron (Fe), % 0 to 0.050
0 to 0.35
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.5
Silicon (Si), % 0
0.5 to 0.9
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 18.2 to 21.5
0 to 0.2
Residuals, % 0
0 to 0.15