MakeItFrom.com
Menu (ESC)

C26000 Brass vs. ACI-ASTM CH20 Steel

C26000 brass belongs to the copper alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 66
38
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
78
Tensile Strength: Ultimate (UTS), MPa 320 to 680
610
Tensile Strength: Yield (Proof), MPa 110 to 570
350

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 950
1410
Melting Onset (Solidus), °C 920
1430
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
20
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 45
53
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
200
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
300
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
22
Strength to Weight: Bending, points 13 to 21
21
Thermal Diffusivity, mm2/s 38
3.7
Thermal Shock Resistance, points 11 to 23
15

Alloy Composition

Bismuth (Bi), % 0 to 0.0059
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.050
54.7 to 66
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
12 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0 to 0.3
0