MakeItFrom.com
Menu (ESC)

C26000 Brass vs. AWS E70C-Ni2

C26000 brass belongs to the copper alloys classification, while AWS E70C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is AWS E70C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 66
27
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Tensile Strength: Ultimate (UTS), MPa 320 to 680
560
Tensile Strength: Yield (Proof), MPa 110 to 570
450

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 920
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 25
3.3
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 45
22
Embodied Water, L/kg 320
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
140
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
540
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
20
Strength to Weight: Bending, points 13 to 21
19
Thermal Diffusivity, mm2/s 38
14
Thermal Shock Resistance, points 11 to 23
17

Alloy Composition

Bismuth (Bi), % 0 to 0.0059
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 68.5 to 71.5
0 to 0.35
Iron (Fe), % 0 to 0.050
94.1 to 98.3
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.3
Nickel (Ni), % 0
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0
0 to 0.5