MakeItFrom.com
Menu (ESC)

C26000 Brass vs. EN 1.0456 Steel

C26000 brass belongs to the copper alloys classification, while EN 1.0456 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 66
24 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 230 to 390
270 to 280
Tensile Strength: Ultimate (UTS), MPa 320 to 680
420 to 450
Tensile Strength: Yield (Proof), MPa 110 to 570
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 920
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
48
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.2
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 45
20
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
93 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
220 to 230
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
15 to 16
Strength to Weight: Bending, points 13 to 21
16 to 17
Thermal Diffusivity, mm2/s 38
13
Thermal Shock Resistance, points 11 to 23
13 to 14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Bismuth (Bi), % 0 to 0.0059
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 68.5 to 71.5
0 to 0.35
Iron (Fe), % 0 to 0.050
96.7 to 99.48
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.5 to 1.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0 to 0.3
0