MakeItFrom.com
Menu (ESC)

C26000 Brass vs. EN 1.4988 Stainless Steel

C26000 brass belongs to the copper alloys classification, while EN 1.4988 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 66
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 230 to 390
430
Tensile Strength: Ultimate (UTS), MPa 320 to 680
640
Tensile Strength: Yield (Proof), MPa 110 to 570
290

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
920
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 920
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
6.0
Embodied Energy, MJ/kg 45
89
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
180
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
210
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
23
Strength to Weight: Bending, points 13 to 21
21
Thermal Diffusivity, mm2/s 38
4.0
Thermal Shock Resistance, points 11 to 23
14

Alloy Composition

Bismuth (Bi), % 0 to 0.0059
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.050
62.1 to 69.5
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 0
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.6 to 0.85
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0 to 0.3
0