MakeItFrom.com
Menu (ESC)

C26000 Brass vs. EN 1.5525 Steel

C26000 brass belongs to the copper alloys classification, while EN 1.5525 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 66
11 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 230 to 390
310 to 350
Tensile Strength: Ultimate (UTS), MPa 320 to 680
440 to 1440
Tensile Strength: Yield (Proof), MPa 110 to 570
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 920
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
50
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.9
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 320
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
240 to 640
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
16 to 51
Strength to Weight: Bending, points 13 to 21
16 to 36
Thermal Diffusivity, mm2/s 38
13
Thermal Shock Resistance, points 11 to 23
13 to 42

Alloy Composition

Bismuth (Bi), % 0 to 0.0059
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 68.5 to 71.5
0 to 0.25
Iron (Fe), % 0 to 0.050
97.7 to 98.9
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0 to 0.3
0