MakeItFrom.com
Menu (ESC)

C26000 Brass vs. SAE-AISI 4130 Steel

C26000 brass belongs to the copper alloys classification, while SAE-AISI 4130 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is SAE-AISI 4130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 66
13 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 230 to 390
340 to 640
Tensile Strength: Ultimate (UTS), MPa 320 to 680
530 to 1040
Tensile Strength: Yield (Proof), MPa 110 to 570
440 to 980

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
420
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 920
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
43
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.4
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 45
20
Embodied Water, L/kg 320
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
83 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
500 to 2550
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 23
19 to 37
Strength to Weight: Bending, points 13 to 21
19 to 29
Thermal Diffusivity, mm2/s 38
12
Thermal Shock Resistance, points 11 to 23
16 to 31

Alloy Composition

Bismuth (Bi), % 0 to 0.0059
0
Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.050
97.3 to 98.2
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0.4 to 0.6
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0 to 0.3
0