MakeItFrom.com
Menu (ESC)

C26000 Brass vs. C83600 Ounce Metal

Both C26000 brass and C83600 ounce metal are copper alloys. They have 75% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.5 to 66
21
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
39
Tensile Strength: Ultimate (UTS), MPa 320 to 680
250
Tensile Strength: Yield (Proof), MPa 110 to 570
120

Thermal Properties

Latent Heat of Fusion, J/g 180
190
Maximum Temperature: Mechanical, °C 140
160
Melting Completion (Liquidus), °C 950
1010
Melting Onset (Solidus), °C 920
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 120
72
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
15
Electrical Conductivity: Equal Weight (Specific), % IACS 31
15

Otherwise Unclassified Properties

Base Metal Price, % relative 25
31
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 45
50
Embodied Water, L/kg 320
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
43
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
70
Stiffness to Weight: Axial, points 7.2
6.7
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 11 to 23
7.9
Strength to Weight: Bending, points 13 to 21
10
Thermal Diffusivity, mm2/s 38
22
Thermal Shock Resistance, points 11 to 23
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Bismuth (Bi), % 0 to 0.0059
0
Copper (Cu), % 68.5 to 71.5
84 to 86
Iron (Fe), % 0 to 0.050
0 to 0.3
Lead (Pb), % 0 to 0.070
4.0 to 6.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 28.1 to 31.5
4.0 to 6.0
Residuals, % 0
0 to 0.7