MakeItFrom.com
Menu (ESC)

C26000 Brass vs. C94800 Bronze

Both C26000 brass and C94800 bronze are copper alloys. They have 72% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.5 to 66
22
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 320 to 680
310
Tensile Strength: Yield (Proof), MPa 110 to 570
160

Thermal Properties

Latent Heat of Fusion, J/g 180
200
Maximum Temperature: Mechanical, °C 140
190
Melting Completion (Liquidus), °C 950
1030
Melting Onset (Solidus), °C 920
900
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
12
Electrical Conductivity: Equal Weight (Specific), % IACS 31
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
34
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 45
56
Embodied Water, L/kg 320
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
58
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
110
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 11 to 23
9.8
Strength to Weight: Bending, points 13 to 21
12
Thermal Diffusivity, mm2/s 38
12
Thermal Shock Resistance, points 11 to 23
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Bismuth (Bi), % 0 to 0.0059
0
Copper (Cu), % 68.5 to 71.5
84 to 89
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.070
0.3 to 1.0
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 28.1 to 31.5
1.0 to 2.5
Residuals, % 0
0 to 1.3