MakeItFrom.com
Menu (ESC)

C26000 Brass vs. S13800 Stainless Steel

C26000 brass belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C26000 brass and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 66
11 to 18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 230 to 390
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 320 to 680
980 to 1730
Tensile Strength: Yield (Proof), MPa 110 to 570
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 140
810
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 920
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 25
15
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 420
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 51 to 1490
1090 to 5490
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 23
35 to 61
Strength to Weight: Bending, points 13 to 21
28 to 41
Thermal Diffusivity, mm2/s 38
4.3
Thermal Shock Resistance, points 11 to 23
33 to 58

Alloy Composition

Aluminum (Al), % 0
0.9 to 1.4
Bismuth (Bi), % 0 to 0.0059
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 68.5 to 71.5
0
Iron (Fe), % 0 to 0.050
73.6 to 77.3
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 28.1 to 31.5
0
Residuals, % 0 to 0.3
0