MakeItFrom.com
Menu (ESC)

C26200 Brass vs. 6005A Aluminum

C26200 brass belongs to the copper alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C26200 brass and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 3.0 to 180
8.6 to 17
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 230 to 390
120 to 180
Tensile Strength: Ultimate (UTS), MPa 330 to 770
190 to 300
Tensile Strength: Yield (Proof), MPa 110 to 490
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 140
170
Melting Completion (Liquidus), °C 950
650
Melting Onset (Solidus), °C 920
600
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
180 to 190
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 31
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
76 to 530
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 11 to 26
20 to 30
Strength to Weight: Bending, points 13 to 23
27 to 36
Thermal Diffusivity, mm2/s 38
72 to 79
Thermal Shock Resistance, points 11 to 26
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 67 to 70
0 to 0.3
Iron (Fe), % 0 to 0.050
0 to 0.35
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.5
Silicon (Si), % 0
0.5 to 0.9
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 29.6 to 33
0 to 0.2
Residuals, % 0
0 to 0.15