MakeItFrom.com
Menu (ESC)

C26200 Brass vs. EN 1.0449 Cast Steel

C26200 brass belongs to the copper alloys classification, while EN 1.0449 cast steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is EN 1.0449 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 180
28
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 330 to 770
460
Tensile Strength: Yield (Proof), MPa 110 to 490
220

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 920
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
130
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 26
16
Strength to Weight: Bending, points 13 to 23
17
Thermal Diffusivity, mm2/s 38
14
Thermal Shock Resistance, points 11 to 26
14

Alloy Composition

Carbon (C), % 0
0 to 0.18
Copper (Cu), % 67 to 70
0
Iron (Fe), % 0 to 0.050
98 to 100
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0