MakeItFrom.com
Menu (ESC)

C26200 Brass vs. SAE-AISI D4 Steel

C26200 brass belongs to the copper alloys classification, while SAE-AISI D4 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is SAE-AISI D4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 180
8.4 to 15
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
74
Shear Strength, MPa 230 to 390
460 to 1210
Tensile Strength: Ultimate (UTS), MPa 330 to 770
760 to 2060
Tensile Strength: Yield (Proof), MPa 110 to 490
470 to 1540

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Melting Completion (Liquidus), °C 950
1430
Melting Onset (Solidus), °C 920
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
31
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
4.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
5.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
8.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 45
49
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
100 to 160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 26
27 to 75
Strength to Weight: Bending, points 13 to 23
24 to 47
Thermal Diffusivity, mm2/s 38
8.3
Thermal Shock Resistance, points 11 to 26
23 to 63

Alloy Composition

Carbon (C), % 0
2.1 to 2.4
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 67 to 70
0 to 0.25
Iron (Fe), % 0 to 0.050
80.6 to 86.3
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
0.7 to 1.2
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 1.0
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0