MakeItFrom.com
Menu (ESC)

C26200 Brass vs. C82500 Copper

Both C26200 brass and C82500 copper are copper alloys. They have 69% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 3.0 to 180
1.0 to 20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 41
45
Tensile Strength: Ultimate (UTS), MPa 330 to 770
550 to 1100
Tensile Strength: Yield (Proof), MPa 110 to 490
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 180
240
Maximum Temperature: Mechanical, °C 140
280
Melting Completion (Liquidus), °C 950
980
Melting Onset (Solidus), °C 920
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
20
Electrical Conductivity: Equal Weight (Specific), % IACS 31
21

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 45
160
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
400 to 4000
Stiffness to Weight: Axial, points 7.2
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 26
18 to 35
Strength to Weight: Bending, points 13 to 23
17 to 27
Thermal Diffusivity, mm2/s 38
38
Thermal Shock Resistance, points 11 to 26
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 67 to 70
95.3 to 97.8
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.070
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 29.6 to 33
0 to 0.1
Residuals, % 0
0 to 0.5