MakeItFrom.com
Menu (ESC)

C26200 Brass vs. C95410 Bronze

Both C26200 brass and C95410 bronze are copper alloys. They have 69% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 3.0 to 180
9.1 to 13
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 330 to 770
620 to 740
Tensile Strength: Yield (Proof), MPa 110 to 490
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 180
230
Maximum Temperature: Mechanical, °C 140
230
Melting Completion (Liquidus), °C 950
1040
Melting Onset (Solidus), °C 920
1030
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 120
59
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
13
Electrical Conductivity: Equal Weight (Specific), % IACS 31
14

Otherwise Unclassified Properties

Base Metal Price, % relative 25
28
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 2.7
3.3
Embodied Energy, MJ/kg 45
54
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
280 to 630
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 11 to 26
21 to 25
Strength to Weight: Bending, points 13 to 23
20 to 22
Thermal Diffusivity, mm2/s 38
16
Thermal Shock Resistance, points 11 to 26
22 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Copper (Cu), % 67 to 70
83 to 85.5
Iron (Fe), % 0 to 0.050
3.0 to 5.0
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
1.5 to 2.5
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0
0 to 0.5