MakeItFrom.com
Menu (ESC)

C26200 Brass vs. N08120 Nickel

C26200 brass belongs to the copper alloys classification, while N08120 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 180
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
79
Shear Strength, MPa 230 to 390
470
Tensile Strength: Ultimate (UTS), MPa 330 to 770
700
Tensile Strength: Yield (Proof), MPa 110 to 490
310

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 140
1000
Melting Completion (Liquidus), °C 950
1420
Melting Onset (Solidus), °C 920
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 20
14

Otherwise Unclassified Properties

Base Metal Price, % relative 25
45
Density, g/cm3 8.2
8.2
Embodied Carbon, kg CO2/kg material 2.7
7.2
Embodied Energy, MJ/kg 45
100
Embodied Water, L/kg 320
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
190
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
240
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 26
24
Strength to Weight: Bending, points 13 to 23
21
Thermal Diffusivity, mm2/s 38
3.0
Thermal Shock Resistance, points 11 to 26
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 67 to 70
0 to 0.5
Iron (Fe), % 0 to 0.050
21 to 41.4
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0