MakeItFrom.com
Menu (ESC)

C26200 Brass vs. N10003 Nickel

C26200 brass belongs to the copper alloys classification, while N10003 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 3.0 to 180
42
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 41
80
Shear Strength, MPa 230 to 390
540
Tensile Strength: Ultimate (UTS), MPa 330 to 770
780
Tensile Strength: Yield (Proof), MPa 110 to 490
320

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Maximum Temperature: Mechanical, °C 140
930
Melting Completion (Liquidus), °C 950
1520
Melting Onset (Solidus), °C 920
1460
Specific Heat Capacity, J/kg-K 390
420
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 31
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 25
70
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 45
180
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
260
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 11 to 26
24
Strength to Weight: Bending, points 13 to 23
21
Thermal Diffusivity, mm2/s 38
3.1
Thermal Shock Resistance, points 11 to 26
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 67 to 70
0 to 0.35
Iron (Fe), % 0 to 0.050
0 to 5.0
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0