MakeItFrom.com
Menu (ESC)

C26200 Brass vs. S32003 Stainless Steel

C26200 brass belongs to the copper alloys classification, while S32003 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C26200 brass and the bottom bar is S32003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 180
28
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 41
79
Shear Strength, MPa 230 to 390
480
Tensile Strength: Ultimate (UTS), MPa 330 to 770
730
Tensile Strength: Yield (Proof), MPa 110 to 490
510

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
1010
Melting Completion (Liquidus), °C 950
1440
Melting Onset (Solidus), °C 920
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
14
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 160
180
Resilience: Unit (Modulus of Resilience), kJ/m3 62 to 1110
660
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 26
26
Strength to Weight: Bending, points 13 to 23
23
Thermal Diffusivity, mm2/s 38
4.0
Thermal Shock Resistance, points 11 to 26
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 22.5
Copper (Cu), % 67 to 70
0
Iron (Fe), % 0 to 0.050
68.2 to 75.9
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
3.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 29.6 to 33
0
Residuals, % 0 to 0.3
0