MakeItFrom.com
Menu (ESC)

C26800 Brass vs. C72700 Copper-nickel

Both C26800 brass and C72700 copper-nickel are copper alloys. They have 67% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C26800 brass and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 310 to 650
460 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 930
1100
Melting Onset (Solidus), °C 900
930
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 120
54
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
11
Electrical Conductivity: Equal Weight (Specific), % IACS 30
11

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.1
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.0
Embodied Energy, MJ/kg 45
62
Embodied Water, L/kg 320
350

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 11 to 22
14 to 34
Strength to Weight: Bending, points 13 to 21
15 to 26
Thermal Diffusivity, mm2/s 37
16
Thermal Shock Resistance, points 10 to 22
16 to 38

Alloy Composition

Copper (Cu), % 64 to 68.5
82.1 to 86
Iron (Fe), % 0 to 0.050
0 to 0.5
Lead (Pb), % 0 to 0.15
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 31 to 36
0 to 0.5
Residuals, % 0
0 to 0.3